Multiple target three-dimensional coordinate estimation for bistatic MIMO radar with uniform linear receive array

نویسندگان

  • Jun Li
  • Huan Li
  • Libing Long
  • Guisheng Liao
  • Hugh D. Griffiths
چکیده

A novel scheme to achieve three-dimensional (3D) target location in bistatic radar systems is evaluated. The proposed scheme develops the additional information of the bistatic radar, that is the transmit angles, to estimate the 3D coordinates of the targets by using multiple-input multiple-output techniques with a uniform circular array on transmit and a uniform linear array on receive. The transmit azimuth, transmit elevation angles and receive cone angle of the targets are first extracted from the receive data and the 3D coordinates are then calculated on the basis of these angles. The geometric dilution of precision which is based on the root Cramer-Rao bound of the angles, is derived to evaluate the performance bound of the proposed scheme. Further, an ESPRIT based algorithm is developed to estimate the 3D coordinates of the targets. The advantages of this scheme are that the hardware of the receive array is reduced and the 3D coordinates of the targets can be estimated in the absence of the range information in bistatic radar. Simulations and analysis show that the proposed scheme has potential to achieve good performance with low-frequency radar.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PARAFAC-based algorithm for multidimensional parameter estimation in polarimetric bistatic MIMO radar

In this article, we investigate the problem of applying the parallel factor quadrilinear decomposition technique to multidimensional target parameter estimation in a polarimetric bistatic multipleinput multiple-output (MIMO) radar system with a uniform rectangular array at the transmitter and a cross-dipole-based uniform rectangular array at the receiver. The signal model is developed, and a no...

متن کامل

Joint DOD/DOA estimation in MIMO radar exploiting time-frequency signal representations

In this article, we consider the joint estimation of direction-of-departure (DOD) and direction-ofarrival (DOA) information of maneuvering targets in a bistatic multiple-input multiple-output (MIMO) radar system that exploits spatial time-frequency distribution (STFD). STFD has been found useful in solving various array processing problems, such as direction finding and blind source separation,...

متن کامل

Performance of Target Detection in Phased-MIMO Radars

In this paper, the problem of target detection in phased-MIMO radars is considered and target detection performance of phased-MIMO radars is compared with MIMO and phased-array radars. Phased-MIMO radars combine advantages of the MIMO and phased-array radars. In these radars, the transmit array will be partitioned into a number of subarrays that are allowed to overlap and each subarray transmit...

متن کامل

Multi-target Direction Measurement on Bistatic MIMO Radar

In recent years, multiple-input multiple output (MIMO) radar has been widespread concern in the domestic and foreign researchers. Bistatic radar draws on the great success of MIMO technology in the communications field and it has many advantages over conventional radar. In this paper, the direction angles estimations of bistatic MIMO radar are researched. To contrast traditional radar DOA estim...

متن کامل

Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar

A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013